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Accuracy versus Precision

• Accuracy: how close the result of the 
experiment comes to the true value
• A measure of the “correctness” of the 

result

• Precision: how exactly the result is 
determined (without reference to what 
the result means)
• Absolute precision – same units as value

• Relative precision – fractional units of value

https://sites.google.com/a/apaches.k12.in.us/mr-evans-science-website/accuracy-vs-precision

Source: P. Bevington, Data Reduction and Error Analysis for the Physical Sciences



Types of Uncertainties

• Systematic
• imperfect knowledge of 

measurement apparatus, other 
physical quantities needed for the 
measurement, or the physical 
model used to interpret the data. 

• Generally correlated between 
measurements. Cannot be 
reduced by multiple 
measurements.

• Better calibration, or 
measurement of other variable 
can reduce the uncertainty.

• Statistical
• Uncertainties due to stochastic 

fluctuations

• Generally there is no correlation 
between successive 
measurements. 

• Multiple measurements can be 
used to reduce the uncertainty. 



Condensed Matter Experiments (Ferroelectrics, 
Second Sound, Superconductivity, NMR, AFM)

• Sources of Uncertainty
• Sample preparation

• Sample/detector degradation

• Temperature calibration

• Voltage calibration

• Pressure calibration/regulation



Atomic, Molecular, Optical Experiments (Optical 
Pumping, Quantum Eraser, Spectroscopy)

• Sources of Uncertainty
• Optical alignment

• Atomic density calibration

• Magnetic field calibration

• Optical waveplate / polarizer 
calibration

• Cleanliness of samples, optics

• Single-photon counting statistics



Nuclear Experiments (Alpha Range, Gamma-
Gamma, Muon, Moessbauer)
• Sources of Uncertainty

• Spatial positioning of equipment

• Voltage drift

• Heating

• Energy calibration

• Pressure calibration/regulation

• Particle counting statistics



Ways to check for error/uncertainty

• Reproducibility: would the same results be produced for
• a 2nd, 3rd, experiment?

• an “identical” sample? If not, check preparation/degradation

• slightly different parameters, such as speed of change in T, direction of 
change? If not, check for time lags, response of equipment.

• different quality of experimental components such as connectors, paint, 
wires?

• Statistical analysis, error propagation

• Fitting to theory



Statistical Analysis & Fitting, or, “How to get error bars”



Statistical Analysis

• Probability density functions: what is the probability of getting a 
particular value?

• Examples:



Counting Experiments: Poisson Distribution

•  

r: decay rate [counts/s]

Probability to have n decays in time interval t:

Poisson Distribution
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A statistical process is described 
through a Poisson Distribution if:

• random process → for a given 
nucleus probability for a decay to 
occur is the same in each time 
interval

• universal probability → the 
probability to decay in a given time 
interval is same for all nuclei

• no correlation between two 
instances → the decay of one 
nucleus does not change the 
probability for a second nucleus to 
decay

Is nuclear decay a random process?

Yes, follows Poisson Distribution!

            (Rutherford and Geiger, 1910)



Counting Experiments: Poisson Distribution

•  

r: decay rate [counts/s]

Probability to have n decays in time interval t:

Poisson Distribution
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Some properties:
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Error propagation

for one variable:
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Error propagation

for  two variables:

Propagation of errors
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Propagate error in decay constant λ into half life:

Example I, Error on Half-Life



• Measured coincidence counts:  S’ = S + B, ΔS’ = √S’
• Measured background counts:  B, ΔB = √B
• Signal:  S = S’ – B
• Error:  
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Example II, Counts for gg Correlations



Note: Muon lifetime will usually be lower compared to real one of 2.2 ms due to negative muon capture.

Here, 0.73 ± 0.18; a bit “low” but okay.

Too low means errors are underestimated

Too high means fit is bad

2.08 ± 0.05 ms

Fitting

Chi-square:                               , where x = measured value, m = mean,  2 = variance

Goodness-of-fit test for Poisson distribution:

2
2

2
1

( )n
i i

i i

x m


=

−
= 

(# points - # constraints)

WARNING: DO NOT try to determine goodness of fit from Origin’s Chi-square: not normalized!

Instead, use the r-square value: the closer to 1, the better the fit



Reporting measurement results

• Include uncertainty with correct number of significant figures

Fit or measurement result Uncertainty Wrong Right

V = 0.122349 m/s σ = 0.01298 m/s 0.122389 +/- 0.01298 m/s 0.122 +/- 0.013 m/s

T = 3.745 x 10-3 s σ = 0.0798 ms 3.745 x 10-3 s +/- 0.0798 ms (3.75 ± 0.08) x 10-3 s 

Too many digits for given error

Units don’t match

Too many digits
for given error

For errors starting with 1,
can keep 1 additional digit

Use scientific notation

5.24 x 10-2 +/- 0.01 T

0.05 +/- 0.01 T

1.2687 +/- 0.0019 g

1.2687 +/- 0.0019 g

56.8889 +/- 2.5487 s

57 +/- 3 s

Examples:



Reporting measurement results

Too small to read! Quote in text, not in plot.

Wrong number of 
significant figures!

Bad OK

Better to quote in text, not in plot.
Has right sig figs.



Data rejection



Data rejection

• What if an experiment doesn't give the result you expected? What if it gives a 
result that you just know is wrong in some way? Do you keep trying until you get 
the "right" result?

• This happens. Data rejection is common. But be careful.

• Realities of complex experiments
• Stuff goes wrong
• Equipment malfunctions
• People make mistakes

• Burden on the physicist: Record everything 

• Responsibility of physicist: Develop a “result-unbiased” algorithm for data 
rejection
• Make decisions before you look at the results
• Keep answer in a “blind” or unbiased space
• You can rarely use the result to determine inclusion



Consider 6 measurements of a pendulum period:

3.8, 3.5, 3.9, 3.9, 3.4, 1.8

Should the last measurement be rejected?

Possible answers:

Yes: If some aspect of the experiment was changed … new “slow” stopwatch, etc.

No: Never! You must always keep all data !! (Diehards; beware)

Maybe?: The usual case. You don’t know why, but something may have made this 
measurement “bad.” How do you set up a judgement that is unbiased?

First, compute some simple statistics:

Mean of measurements:

Standard deviation:

Is the measurement anomalous? It differs by 2 (1.6) from the mean.

Rejection of Data

from J. Taylor, Ch. 6 
of An Introduction 
to Error Analysis



The probability (assuming a Gaussian distribution) is 0.05 for this to be an acceptable 
measurement. What’s wrong with that?  We would even expect that 1 out of 20 measurements 
would fall outside of the 2 bound.

But, we only made 6 measurements.

So, we expect that only 6*0.05= 0.3 measurements should fall outside the 2 bound.

Now it is a bit about personal taste.  Is this unreasonable?

Chauvenet’s criterion is the following:  If the suspect measurement has a lower probability than 
1/2, you should reject it.  Our measurement has 0.3 so it goes.

Chauvenet’s Criterion



Data set:
11.5, 5.5, 4.0, 8.0, 7.6, 1.5, 10.2, 0.5

Mean: 6.1
Standard deviation: 4.0

List of deviations in sigma:
1.35, -0.15, -0.53, 0.48, 0.38, -1.15, 1.03, -1.40

Data Points         prob in 1    prob in 8
   (8,11.5)              0.09           0.53
   (44,1.5)              0.07           0.44
   (65,0.5)              0.15           0.72

A case study



Data set:
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A case study

What are the uncertainties?

Can we relate power fluctuations to 
particular data points?

Why should we trust the theory
prediction? It could be simply
wrong … 



Assume we find the errors to
be +/- 2.5 independent of
beam intensity

Are the data compatible
with a constant behavior?
Not sure: 2/ndf is 2.5

Too low means errors are 
underestimated

Too high means fit is bad

A case study



Are the data compatible
with a polynomial?
Not sure: 2/ndf is 2.4

In absence of slow control
data for beam & experi-
mental apparatus,
data cannot be rejected !

Too low means errors are 
underestimated

Too high means fit is bad

A case study



• Write down everything 
• in the logbook; take your time; use sentences; record numbers (values); 

• glitch in the power?  note the time 

• temperature “cold” or “hot”? comment about it

• somebody “reset” the system?  note it please and when

• Record (electronically if possible) everything reasonable 
• as parallel information to the main data set

• temperatures; voltages; generally called “slow controls”

• You WILL (almost certainly) have to go back and hunt for this 
documentation when something possibly anomalous arises … and it will

Is all data good data? NO!



• Data rejection does exist and is necessary.  
• If you can document a problem, then it is easy to discard

• There still may be some data you would like to throw out.
• this is tricky and takes some carefully prepared, bias-free statistical tests to justify 

• Theory curves can be misleading and should generally (always?) be 
avoided when dealing with issues of data rejection

• You must also think in reverse.  How self-consistent is your data set?  
• There are then many sophisticated tests of the data set itself

• You will be expected to demonstrate this in many cases

Some additional points



Summary (for your report)

• Always include uncertainty estimates for all your measurements if 
applicable (use correct number of significant digits) 

• Compare your results with published values if applicable
• Do your measurements agree within uncertainty?

• If not, is your estimate of systematic or statistical uncertainty correct? Are 
there other factors that can influence your result that you forgot to consider? 

• If you need to reject certain sets or points of data, you should 
describe the reason that data should not be included. The reason 
should be based on changes in environment, setup, etc., and not 
solely result driven. 
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